32 research outputs found

    Analysis of classifiers' robustness to adversarial perturbations

    Full text link
    The goal of this paper is to analyze an intriguing phenomenon recently discovered in deep networks, namely their instability to adversarial perturbations (Szegedy et. al., 2014). We provide a theoretical framework for analyzing the robustness of classifiers to adversarial perturbations, and show fundamental upper bounds on the robustness of classifiers. Specifically, we establish a general upper bound on the robustness of classifiers to adversarial perturbations, and then illustrate the obtained upper bound on the families of linear and quadratic classifiers. In both cases, our upper bound depends on a distinguishability measure that captures the notion of difficulty of the classification task. Our results for both classes imply that in tasks involving small distinguishability, no classifier in the considered set will be robust to adversarial perturbations, even if a good accuracy is achieved. Our theoretical framework moreover suggests that the phenomenon of adversarial instability is due to the low flexibility of classifiers, compared to the difficulty of the classification task (captured by the distinguishability). Moreover, we show the existence of a clear distinction between the robustness of a classifier to random noise and its robustness to adversarial perturbations. Specifically, the former is shown to be larger than the latter by a factor that is proportional to \sqrt{d} (with d being the signal dimension) for linear classifiers. This result gives a theoretical explanation for the discrepancy between the two robustness properties in high dimensional problems, which was empirically observed in the context of neural networks. To the best of our knowledge, our results provide the first theoretical work that addresses the phenomenon of adversarial instability recently observed for deep networks. Our analysis is complemented by experimental results on controlled and real-world data

    On the Orchestration and Provisioning of NFV-enabled Multicast Services

    Get PDF
    The paradigm of network function virtualization (NFV) with the support of software-defined networking has emerged as a prominent approach to foster innovation in the networking field and reduce the complexity involved in managing modern-day conventional networks. Before NFV, functions, which can manipulate the packet header and context of traffic flow, used to be implemented at fixed locations in the network substrate inside proprietary physical devices (called middlewares). With NFV, such functions are softwarized and virtualized. As such, they can be deployed in commodity servers as demanded. Hence, the provisioning of a network service becomes more agile and abstract, thereby giving rise to the next-generation service-customized networks which have the potential to meet new demands and use cases. In this thesis, we focus on three complementary research problems essential to the orchestration and provisioning of NFV-enabled multicast network services. An NFV-enabled multicast service connects a source with a set of destinations. It specifies a set of NFs that should be executed at the chosen routes from the source to the destinations, with some resources and ordering relationships that should be satisfied in wired core networks. In Problem I, we investigate a static joint traffic routing and virtual NF placement framework for accommodating multicast services over the network substrate. We develop optimal formulations and efficient heuristic algorithms that jointly handle the static embedding of one or multiple service requests over the network substrate with single-path and multipath routing. In Problem II, we study the online orchestration of NFV-enabled network services. We consider both unicast and multicast NFV-enabled services with mandatory and best-effort NF types. Mandatory NFs are strictly necessary for the correctness of a network service, whereas best-effort NFs are preferable yet not necessary. Correspondingly, we propose a primal-dual based online approximation algorithm that allocates both processing and transmission resources to maximize a profit function that is proportional to the throughput. The online algorithm resembles a joint admission mechanism and an online composition, routing, and NF placement framework. In the core network, traffic patterns exhibit time-varying characteristics that can be cumbersome to model. Therefore, in Problem III, we develop a dynamic provisioning approach to allocate processing and transmission resources based on the traffic pattern of the embedded network service using deep reinforcement learning (RL). Notably, we devise a model-assisted exploration procedure to improve the efficiency and consistency of the deep RL algorithm

    Personality Types and Their Relationship to Social Adjustment Among Libyan Students Studying in Jordanian Universities

    Get PDF
    The present study aimed to identify the social adjustment level of the Libyan students enrolled at Jordanian universities. It aimed to explore the relationship between personality patterns and social adjustment. The sample consists of (147) Libyan students enrolled at Jordanian universities. To meet the study’s goals, the researchers developed a social adjustment scale. They used the personality types inventory that was developed by Al-Shraifin et al (2018). It was found that the social adjustment level of the Libyan students enrolled at Jordanian universities is moderate. It was found that there is a positive statistically significant relationship between personality patterns and social adjustment. Keywords: Personality patterns, social adjustment. DOI: 10.7176/JEP/11-19-07 Publication date:July 31st 202

    Dynamic Encoding and Decoding of Information for Split Learning in Mobile-Edge Computing: Leveraging Information Bottleneck Theory

    Full text link
    Split learning is a privacy-preserving distributed learning paradigm in which an ML model (e.g., a neural network) is split into two parts (i.e., an encoder and a decoder). The encoder shares so-called latent representation, rather than raw data, for model training. In mobile-edge computing, network functions (such as traffic forecasting) can be trained via split learning where an encoder resides in a user equipment (UE) and a decoder resides in the edge network. Based on the data processing inequality and the information bottleneck (IB) theory, we present a new framework and training mechanism to enable a dynamic balancing of the transmission resource consumption with the informativeness of the shared latent representations, which directly impacts the predictive performance. The proposed training mechanism offers an encoder-decoder neural network architecture featuring multiple modes of complexity-relevance tradeoffs, enabling tunable performance. The adaptability can accommodate varying real-time network conditions and application requirements, potentially reducing operational expenditure and enhancing network agility. As a proof of concept, we apply the training mechanism to a millimeter-wave (mmWave)-enabled throughput prediction problem. We also offer new insights and highlight some challenges related to recurrent neural networks from the perspective of the IB theory. Interestingly, we find a compression phenomenon across the temporal domain of the sequential model, in addition to the compression phase that occurs with the number of training epochs.Comment: Accepted to Proc. IEEE Globecom 202
    corecore